Quality Report
PWS ID Number TX0210016Wellborn Special Utility District
P.O. Box 250, Wellborn, Texas 77881
979-690-9799

Our Drinking Water Is Regulated

This report is intended to provide you with important information about your drinking water and the efforts made by Wellborn SUD to provide safe drinking water. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. We hope this information helps you become more knowledgeable about what is in your drinking water.

Public Participation Opportunities

Board of Directors Meeting:

Date: The third Tuesday of each month. Time: 6:00 P.M. Location: Wellborn Special Utility District 6784 Victoria Avenue College Station, Texas 77845 Phone Number: 979-690-9799

To learn more about future public meetings (concerning your drinking water), or to request to schedule one, please contact us.

<u>En Espanol</u>

Este informe incluye información impotante sobre el agua para tomar. Para asistencia en español, favor de llamar al tel. (979) 690-9799.

Information about your drinking water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

ALL Drinking Water May Contain Contaminants

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-4264791. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agricultural, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits of contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor or color of drinking water, please contact the Wellborn SUD office at 979-690-9799.

Special Notice

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immunocompromised persons such as those undergoing chemotherapy for cancer, persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at 1-800-426-4791.

Where Do We Get Our Drinking Water?

The source of drinking water used by Wellborn SUD is surface and ground water. It comes from the Yegua and Simsboro Aquifers and Navasota River located in Brazos County and Robertson County, as well as water purchased from the City of Bryan and the City of College Station.

TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants may be found in this CCR. For more information on source water assessments and protection efforts at our system contact Campbell Young at 979-690-9799.

This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies. For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://www.tceq.texas.gov/gis/swaview.

Further details about sources and source-water

assessments are available in Drinking Water Watch at

the following URL:

http://dww2.tceq.texas.gov/DWW/

Treatment of Water

Wellborn SUD treats both groundwater and surface water for disinfection purposes with chlorine or chloramine. In order to ensure that our water is safe, 30 water samples are taken each month from designated sites throughout the community and analyzed by Aqua-Tech Laboratories, Inc. or any other state approved laboratory. These laboratories are approved by the TCEQ.

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not cause for health concern. Therefore, secondaries are not required to be reported in this document, but they may greatly affect the appearance and taste of our water.

About the Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 constituents.

<u>Reading and Understanding the Table –</u> <u>Definitions and Abbreviations</u>

The following tables contain scientific terms and measures, some of which may require explanation.

Maximum Contaminant Level or (MCL) – The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or (MCLG) The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level or (MRDL) The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal or (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL) – The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Avg – Regulatory compliance with some MCLs are

based on running annual average of monthly samples. **ppm** – Milligrams per liter or parts per million – or

one ounce in 7,350 gallons of water. **ppb** - Micrograms per liter or parts per billion – or one ounce in 7,350,000 gallons of water.

ppt – Parts per trillion, or nanograms per liter (ng/L)

ppq – Parts per quadrillion or pictograms per liter (pg/L).

MFL – Million fibers per liter (a measure of asbestos). **NTU** – Nephelometric turbidity units (a measure of turbidity).

pCi/L – Picocuries per liter (a measure of radioactivity).

mrem/year – millirems per year (a measure of radiation absorbed by the body).

na – not applicable

Level 1 Assessment – A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Water Conservation Tips

Water is a precious resource. Unfortunately, it is also a limited resource that is being stretched to accommodate the growing number of users that rely on it. Conserving our water by using it efficiently is the simplest and most cost-effective way to stretch our water supplies and to ensure there will be enough to go around.

- Repair dripping faucets by replacing washers. One drop per second wastes 2,700 gallons of water per year.
- Operate automatic dishwashers and washing machines only when they are fully loaded.
- Check toilets for leaks. Put a few drops of food coloring in your toilet tank. If, without flushing, the coloring begins to appear in the bowl, you have a leak that may be wasting more than 100 gallons of water a day.
- Use mulch to retain moisture in the soil. Mulch also helps to control weeds that compete with landscape plants for water.
- Try trickle or drip irrigation systems in outdoor gardens. These methods use 25 to 50 percent less water than a hose or sprinkler method.
- Take a short shower, a 5-minute shower uses 4-5 gallons of water compared to 50 gallons for a bath.
- Clean the swimming pool filter often. You will not have to replace the water as often.
- Use your water meter to check for hidden water leaks. Read the house water meter before and after a two-hour period when no water is being used. If the meter does not read exactly the same, there is a leak.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill.
- Visit <u>www.epa.gov/watersense</u> for more information on helpful water conservation tips.

Water loss

In the water loss audit submitted to the Texas Water Development Board for the period of January – December 2023, our system lost an estimated 16%. If you have any questions about the water loss audit, please call 979-690-9799.

For your Convenience

A night deposit drop is in the front of the building for the convenience of any customers who may need to drop off a payment after hours. If you are interested in having your water bill drafted from your bank account, please call the office and one of the staff persons will assist you with the procedure. Check our website at <u>www.wellbornsud.com</u> to pay your bill online.

Wellborn Special Utility District (WSUD) is here for you, our customers, 24 hours a day. If you should have

a water emergency after hours, simply call our office at 979-690-9799 and our answering service will dispatch your call to our water operator.

For more information regarding this report contact: Campbell Young, General Manager 979-690-9799.

Este reporte incluye informacion importante el aqua para tomar. Para asistencia en espanol, favor de llamar al telefono 979-690-9799.

Water system facts:

Wellborn Special Utility District was established in 1963 serving approximately 150 customers. As of December 2023, we were serving 9700 customers spread across 267 square miles using a network of 489 miles of pipe. The District currently utilizes a Surface Water Treatment Plant, 8 groundwater wells, 6 elevated towers with a total storage capacity of 3.1 million gallons. The District can produce up to 5 million gallons of water per day. For emergency purposes, Wellborn SUD has interconnections with the City of College Station, City of Bryan and Wickson SUD.

Water System Improvements in 2023

- Began construction of 1 MG Elevated Storage Tank on IGN Rd (now complete). This doubles the elevated storage for the Wellborn system, which doubles the amount of time the system can sustain peak usage.
- Added pumping capacity to the Arrington Rd Pump Station.
- Replaced various process equipment to improve reliability.
- Rehab of Navasota River intake facility to improve reliability.
- Modified obsolete storage tank and pump for improved performance during peak usage.
- Replaced various distribution lines.

2020 System Improvements Project

Our long-awaited water supply project, consisting of a new wellfield in the Simsboro Aquifer north of Bryan along with a 30" transmission pipeline, is still progressing through state agency review. In January of 2024 the project finally received federal environmental approval from USACE and USFWS and moved on to the state agencies (TWDB and TCEQ). Environmental approval from TWDB was received in May 2024 and the project is currently in technical review at both TWDB and TCEQ. Once technical review from TWDB is received, the project can be put out for bid. Construction can begin once TCEQ technical review is complete. Construction is expected to take 18 months. The project will double the District's production capacity and reduce or eliminate water purchase from other entities

2023 Water Quality Test Results

Disinfectants and Disinfection By- Products	infection By-		Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorite	2023	0.875	0 - 0.875	0.8	1	ppm	Ν	By-product of drinking water disinfection.
Haloacetic Acids (HAA5)	2023	24	0-32.4	No Goal for the total	60	ppb	N	By-product of drinking water disinfection

*The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Total				No Goal				
Trihalomethanes (TTHM)	2023	59	7.1 - 48.2	for the total	80	ppb	Ν	By-product of drinking water disinfection

*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2023	0.0827	0.0367 - 0.0827	2	2	ppm	Ν	Discharge of drilling waste; discharge from metal refineries; Erosion of natural deposits.
Cyanide	2023	30	0 - 30	200	200	ppb	Ν	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride	2023	0.34	0-0.34	4	4.0	ppm	Ν	Erosion of natural deposits: Water additive which promotes strong teeth: Discharge from fertilizer and aluminum factories.
Nitrate (measured as Nitrogen)	2023	7	0-6.66	10	10	ppm	Ν	Runoff from fertilizer use: Leaching from septic tanks: sewage: Erosion of natural deposits.

Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your heal care provider.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely source of contamination
Combined Radium 226/228	4/26/2022	1.5	1.5-1.5	0	5	pCi/L	Ν	Erosion of natural deposits

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Atrazine	2023	0.12	0 - 0.12	3	3	ppb	Ν	Runoff from herbicide used in row crops
Di (2-ethylhexyl) phthalate	2023	1.1	0-1.1	0	6	ppb	Ν	Discharge from rubber and chemical factories.

Volatile Organic Contaminants	Collection Date	Highest level Detected	Range of individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Xylenes	2023	0.0005	0 - 0.0005	10	10	ppm	Ν	Discharge from rubber and chemical factories

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample	1		0	Ν	Naturally present in the environment.

Lead and Coppe	r Date Sampled	MCLG	Action Level (AL)	90 th Percentile	# Sites over AL	Units	Violation	Likely source of contamination
Copper	6/23/2021	1.3	1.3	0.425	0	ppm	Ν	Erosion of natural Deposits: Leaching from wood preservatives: corrosion of household plumbing systems.
Lead	6/23/2021	0	15	1.95	0	ррb	Ν	Corrosion of household plumbing systems: Erosion of natural deposits.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Wellborn Special Utility District is responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for

30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Disinfectant Residual

Disinfectant	Year	Average Level	Range of Levels Detected	MRDL	MCLG	Units of Measure	Violation (Y/N)	Source
Chlorine	2023	1.84	1.5 - 2.2	4.0	<4.0	Mg/L	Ν	Water Additive Used to Control Microbes
Chloramine	2023	1.81	1.4 - 2.2	4.0	<4.0	Mg/L	Ν	Water Additive Used to Control Microbes

Turbidity

	Level Detected	Limit (Treatment Technique)	Violations	Likely source of Contamination
Highest single measurement	0.23 NTU	1 NTU	Ν	Soil Runoff
Lowest monthly % meeting limit	100 %	0.3 NTU	Ν	Soil Runoff

Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of the water quality and the effectiveness of our filtration system and disinfectants.

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.

Water Purchased From City of College Station

Regulated Inorganic Contaminants

Year Sampled	Substance	Highest Level Detected	Range of Levels Detected	MCL	MCLG	Units
2022	Arsenic	2.20	2.2 - 2.2	10	n/a	ррb
2022	Barium	0.08	0.077 - 0.077	2	2	ppm
2022	Chromium	13.7	13.7 – 13.7	100	100	ppb
2020	Fluoride	0.39	0.33 - 0.33	4	4	ppm
2022	Selenium	7.6	7.6 – 7.6	50	50	ppb

Secondary Constituents

Year Sampled	Substance	Range of Levels Detected	Limit	Units
2023	Bicarbonate	467	No Recommendation	ppm
2022	Calcium	2.41	No Recommendation	ppm
2023	Carbonate	12	No Recommendation	ppm
2023	Chloride	57	300	ppm
2022	Copper	0.0065	1	ppm
2023	Diluted Conductance	948	No Recommendation	mmhos/cm
2022	Manganese	0.0014	0.05	ppm
2023	pH	8.8	>7.0	N/A
2023	Phenolphthalein Alkalinity (as CaCO3)	10	No Recommendation	ppm
2022	Potassium	1.45	No Recommendation	ppm

2022	Sodium	168	No Recommendation	ppm
2023	Sulfate	300	ppm	
2023	Total Alkalinity as CaCo3	y as CaCo3 407 No Recommendation ppm		
2023	Total Dissolved Solids	ppm		
2022	Total Hardness (as CaCO3)	6.02	No Recommendation	ppm

Water Purchased From City of Bryan Wellborn SUD purchases water from City of Bryan, City of Bryan provides ground water from Simsboro Aquifer.

Year	Constituent	MCL	Detected Level	MCLG	Violation? Y/N	Possible Source(s) of Contaminant
2022	Barium	2 ppm	0.111 ppm	0.111 ppm 2 ppm N		Discharge of drilling waste; discharge from metal refineries; erosion of natural deposits
2022	Chromium	0.1 ppm	0.0133 ppm	0.1 ppm	N	Discharge from steel and pulp mills; erosion of natural deposits
2023	Fluoride	4 ppm			Ν	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
2022	Mercury (inorganic)	2 ppb	<0.4 ppb	2 ppb	Ν	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
2023	Nitrate (as Nitrogen)	10 ppm	0.09 ppm	10 ppm	N	Erosion of natural deposits, runoff from fertilizer use; leaching from septic tanks, sewage
2022	Selenium	0.05 ppm	0.0078 ppm	0.05 ppm	Ν	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills
2023	Gross Alpha	15 pCi/L	< 3 pCi/L	0 pCi/L	Ν	Erosion of natural deposits

Inorganic Contaminants – Screened at the Production Facility

Microbiological Contaminants – Screened in the Distribution System

Year	Constituent	Total Coliform MCL	Total Coliform	Highest Monthly % of Positive Samples	Fecal Coli or E. Coli MCLG	Fecal Coli/E. Coli Samples	Violation	Possible Source of Contaminant
2023	Total Coliforms	>5% of samples/month	0	0%	0 positive samples	0	Ν	Naturally present in the environment

Secondary Constituents

Year	Constituent	MCL	Detected Levels
2022	Aluminum	0.05 - 0.2 ppm	<0.02 ppm
2023	Bicarbonate	Not Regulated	603 ppm
2022	Calcium	Not Regulated	3.12 ppm
2023	Carbonate	Not Regulated	14 ppm
2023	Chloride	300 ppm	66 ppm
2022	Copper	1 ppm	0.0223 ppm
2022	Hardness as Ca/Mg	Not Regulated	7.79 ppm
2022	Magnesium	Not Regulated	<1 ppm
2022	Manganese	0.05 ppm	0.0051 ppm
2022	pH	>7.0	8.3
2022	Sodium	Not Regulated	247 ppm
2023	Sulfate	300 ppm	< 1 ppm
2023	Total Alkalinity	Not Regulated	518 ppm
2023	Dissolved Solids	1000 ppm	680 ppm
2022	Zinc	5 ppm	<0.005 ppm

Year	Constituent	Highest Average Detected	Range Detected	MDRL	MDRLG	Violation? Y/N	Possible Source (s) of Contaminant
2023	Chlorine Disinfectant	2.43 ppm	0.41 – 4.70 ppm	4 ppm	2 ppm	Ν	Disinfectant used to control microbes
2023	Total Trihalomethanes	22.28 ppb	7.8 – 44.1 ppb	80 ppb	0 ppb	Ν	Byproduct of drinking water disinfection
2023	Total Haloacetic Acids	1.88 ppb	1.0 – 2.7 ppb	60 ppb	0 ppb	Ν	Byproduct of drinking water disinfection

Lead and Copper Results – Screened in the Distribution System

Year	Constituent	90 th Percentile	Sites Exceeding Action Level	MCL	MCLG	Possible Source(s) of Contaminant
2023	Lead	1.83 ppb	0	Action Level = 15 ppb	0	Corrosion of household plumbing systems; erosion of natural deposits.
2023	Copper	0.207 ppm	0	Action Level = 1.3 ppm	1.3 ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.